کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2025450 1069997 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil
چکیده انگلیسی

Plants often impact the rate of native soil organic matter turnover through root interactions with soil organisms; however the role of root-microbial interactions in mediation of the “priming effect” is not well understood. We examined the effects of living plant roots and N fertilization on belowground C dynamics in a California annual grassland soil (Haploxeralf) during a two-year greenhouse study. The fate of 13C-labeled belowground C (roots and organic matter) was followed under planted (Avena barbata) and unplanted conditions, and with and without supplemental N (20 kg N ha−1 season−1) over two periods of plant growth, each followed by a dry, fallow period of 120 d. Turnover of belowground 13C SOM was followed using 13C-phospholipid fatty acid (PLFA) biomarkers. Living roots increased the turnover and loss of belowground 13C compared with unplanted soils. Planted soils had 20% less belowground 13C present than in unplanted soils after 2 cycles of planting and fallow. After 2 treatment cycles, unlabeled soil C was 4.8% higher in planted soils than unplanted. The addition of N to soils decreased the turnover of enriched belowground 13C during the first treatment season in both planted and unplanted soils, however no effect of N was observed thereafter. Our findings suggest that A. barbata may increase soil C levels over time because root and exudate C inputs are significant, but that increase will be moderated by an overall faster C mineralization rate of belowground C. N addition may slow soil C losses; however, the effect was minor and transient in this system. The labeled root-derived 13C was initially recovered in gram negative (highest enrichment), gram positive, and fungal biomarkers. With successive growing seasons, the labeled C in the gram negative and fungal markers declined, while gram positive markers continued to accumulate labeled belowground C. The rhizosphere of A. barbata shifted the microbial community composition, resulting in greater abundances of gram negative markers and lower abundances of gram positive, actinobacteria and cyclopropyl PLFA markers compared to unplanted soil. However, the longer-term utilization of labeled belowground C by gram positive bacteria was enhanced in the rhizosphere microbial community compared with unplanted soils. We suggest that the activities of gram positive bacteria may be major controllers of multi-year rhizosphere-related priming of SOM decomposition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 43, Issue 4, April 2011, Pages 718–725
نویسندگان
, , ,