کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2025690 1070006 2010 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Particulate organic matter in water stable aggregates formed after the addition of 14C-labeled maize residues and wetting and drying cycles in vertisols
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Particulate organic matter in water stable aggregates formed after the addition of 14C-labeled maize residues and wetting and drying cycles in vertisols
چکیده انگلیسی

Development of soil structure and the dynamics of water stable aggregates (WSA) in many soils are known to be closely related to the cycling of soil organic matter. In some fine and medium textured soils particulate organic matter (POM) has been found to act as a nucleus for macroaggregate formation. However, this role of POM in aggregate formation has not been demonstrated in soils dominated by smectitic clay minerals. This study explored aggregation processes in a Vertisol from a semi-arid region in Northeastern Mexico in relation to the addition of 14C-labeled maize residues and application of wetting and drying cycles during 105 days of incubation. Fractionation of the WSA formed showed that labeled residues were preferentially accumulated in large macroaggregates (>2000 μm). Treatments with addition of organic residues had three to four times more intra-aggregate particulate organic matter (iPOM) in large macroaggregates than the control after 14 days of incubation. Residue-derived carbon accounted for 53% and 41% of the total carbon stored in the iPOM fraction in amended treatments with and without wetting and drying cycles, respectively. Conversely, residue-derived carbon represented <20% of the total carbon in the iPOM fraction from small macroaggregates (250–2000 μm) and microaggregates (53–250 μm). Results also showed that the amount and concentration of carbon per large macroaggregate did not differ between the large macroaggregates formed under wetting and drying and those formed in continuous moist conditions. However, due to formation of higher number of large macroaggregates per kg of soil, more carbon could be stored in amended soils under wetting and drying than in constantly wet soil: 1.4, 1.8 and 2.7 times more 14C kg−1 soil after 14, 58 and 105 incubation days, respectively. The results in this study suggest that wetting and drying enhanced protection of the added maize residues inside large macroaggregates by forming more aggregates, rather than by increasing the amount of POM entrapped per aggregate. Therefore, after the addition of organic residues, this soil could accumulate more C than continuous moist soil through the influence that wetting and drying has on soil aggregation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 42, Issue 6, June 2010, Pages 953–959
نویسندگان
, , ,