کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2027193 1070097 2006 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Mineralization of sulfur from organic residues assessed by inverse isotope dilution
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک دانش خاک شناسی
پیش نمایش صفحه اول مقاله
Mineralization of sulfur from organic residues assessed by inverse isotope dilution
چکیده انگلیسی
Sulfur (S) deficiency in soils is increasingly recognized in agricultural systems. The quantification of S mineralization/immobilization processes after incorporation of organic materials into soils is a key factor to predict the availability of S to growing plants. However, immobilization and mineralization occur simultaneously making the quantification of the magnitude of each process difficult. We used the inverse isotope (35SO4) dilution technique to quantify immobilization and mineralization fluxes after incorporation of two organic residues with contrasting C/S ratio's (cabbage or wheat straw) into a sandy soil in planted and unplanted soils (pot trial with ryegrass and incubation). The soil was labeled with 35SO4 and incubated for 63 days prior to the application of residues. The specific activity (SA) of soil-extractable SO4 did not change significantly in the control soil during the subsequent experimental period despite significant net mineralization, illustrating that labile-S in soil was homogenously labeled. Application of residues decreased the SAs during the incubation due to the dilution with unlabeled-S from the residues. A three-compartment dynamic model was fitted to the SA data predicting that gross mineralization of residue-S was almost complete over 43 days incubation although this release was not matched by the increase in soil SO4 due to immobilization reactions. Soil-extractable SO4 was significantly increased in the cabbage-treated soil while the reverse was true in the wheat straw amended soil in which the S-immobilization was almost twice the gross mineralization of residue-S. The SA of S in ryegrass were maximally 15% lower than in corresponding soil extracts suggesting that residue mineralization was similar in planted and unplanted soils. The inverse isotope dilution method offers potential for screening S release of different residues; however the details of the dynamics of soil-S isotopes show that the individual fluxes are not constant during the incubation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Soil Biology and Biochemistry - Volume 38, Issue 8, August 2006, Pages 2278-2284
نویسندگان
, , ,