کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2039444 1073057 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
پیش نمایش صفحه اول مقاله
Predicting Drug Response in Human Prostate Cancer from Preclinical Analysis of In Vivo Mouse Models
چکیده انگلیسی


• Computational method uses in vivo data from mice to predict drugs for human cancer
• Method predicts optimal drug combinations using data from single agents
• Demonstrates efficacy of co-targeting PI3 and MAP kinases for prostate cancer
• Generalizable method to use mouse preclinical data to inform human cancer treatment

SummaryAlthough genetically engineered mouse (GEM) models are often used to evaluate cancer therapies, extrapolation of such preclinical data to human cancer can be challenging. Here, we introduce an approach that uses drug perturbation data from GEM models to predict drug efficacy in human cancer. Network-based analysis of expression profiles from in vivo treatment of GEM models identified drugs and drug combinations that inhibit the activity of FOXM1 and CENPF, which are master regulators of prostate cancer malignancy. Validation of mouse and human prostate cancer models confirmed the specificity and synergy of a predicted drug combination to abrogate FOXM1/CENPF activity and inhibit tumorigenicity. Network-based analysis of treatment signatures from GEM models identified treatment-responsive genes in human prostate cancer that are potential biomarkers of patient response. More generally, this approach allows systematic identification of drugs that inhibit tumor dependencies, thereby improving the utility of GEM models for prioritizing drugs for clinical evaluation.

Graphical AbstractFigure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: - Volume 12, Issue 12, 29 September 2015, Pages 2060–2071
نویسندگان
, , , , , ,