کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2039563 | 1073067 | 2015 | 14 صفحه PDF | دانلود رایگان |

• Transcriptional target genes of E4F1 encode mitochondrial and checkpoint proteins
• E4F1 controls the basal expression of the Chek1 gene
• E4F1 transcriptional program impacts metabolism and stress response
• E4F1 is essential for cancer cell survival and could be a target for cancer therapies
SummaryRecent data support the notion that a group of key transcriptional regulators involved in tumorigenesis, including MYC, p53, E2F1, and BMI1, share an intriguing capacity to simultaneously regulate metabolism and cell cycle. Here, we show that another factor, the multifunctional protein E4F1, directly controls genes involved in mitochondria functions and cell-cycle checkpoints, including Chek1, a major component of the DNA damage response. Coordination of these cellular functions by E4F1 appears essential for the survival of p53-deficient transformed cells. Acute inactivation of E4F1 in these cells results in CHK1-dependent checkpoint deficiency and multiple mitochondrial dysfunctions that lead to increased ROS production, energy stress, and inhibition of de novo pyrimidine synthesis. This deadly cocktail leads to the accumulation of uncompensated oxidative damage to proteins and extensive DNA damage, ending in cell death. This supports the rationale of therapeutic strategies simultaneously targeting mitochondria and CHK1 for selective killing of p53-deficient cancer cells.
Graphical AbstractFigure optionsDownload as PowerPoint slide
Journal: - Volume 11, Issue 2, 14 April 2015, Pages 220–233