کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2040340 | 1073107 | 2014 | 13 صفحه PDF | دانلود رایگان |

• SecM stalling takes place within minutes of translating the stall sequence
• Three specific nascent chain-ribosome exit tunnel interactions are required for stalling
• Stalling slows elongation rates up to four codons past the end of the stall sequence
SummarySecM is an E. coli secretion monitor capable of stalling translation on the prokaryotic ribosome without cofactors. Biochemical and structural studies have demonstrated that the SecM nascent chain interacts with the 50S subunit exit tunnel to inhibit peptide bond formation. However, the timescales and pathways of stalling on an mRNA remain undefined. To provide a dynamic mechanism for stalling, we directly tracked the dynamics of elongation on ribosomes translating the SecM stall sequence (FSTPVWISQAQGIRAGP) using single-molecule fluorescence techniques. Within 1 min, three peptide-ribosome interactions work cooperatively over the last five codons of the SecM sequence, leading to severely impaired elongation rates beginning from the terminal proline and lasting four codons. Our results suggest that stalling is tightly linked to the dynamics of elongation and underscore the roles that the exit tunnel and nascent chain play in controlling fundamental steps in translation.
Graphical AbstractFigure optionsDownload as PowerPoint slide
Journal: - Volume 7, Issue 5, 12 June 2014, Pages 1521–1533