کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2041016 | 1073140 | 2012 | 10 صفحه PDF | دانلود رایگان |

SummaryContraction is a critical phase of immunity whereby the vast majority of effector T cells die by apoptosis, sparing a population of long-lived memory cells. Where, when, and why contraction occurs has been difficult to address directly due in large part to the rapid clearance of apoptotic T cells in vivo. To circumvent this issue, we introduced a genetically encoded reporter for caspase-3 activity into naive T cells to identify cells entering the contraction phase. Using two-photon imaging, we found that caspase-3 activity in T cells was maximal at the peak of the response and was associated with loss of motility followed minutes later by cell death. We demonstrated that contraction is a widespread process occurring uniformly in all organs tested and targeting phenotypically diverse T cells. Importantly, we identified a critical window of time during which antigen encounters act to antagonize T cell apoptosis, supporting a causal link between antigen clearance and T cell contraction. Our results offer insight into a poorly explored phase of immunity and provide a versatile methodology to study apoptosis during the development or function of a variety of immune cells in vivo.
Graphical AbstractFigure optionsDownload as PowerPoint slideHighlights
► T cell apoptosis can be tracked in vivo with a genetically encoded caspase-3 reporter
► T cell contraction occurs uniformly in many organs and tissues
► T cell contraction is not fully programmed during priming
► T cell contraction is antagonized by late antigen encounter
Journal: - Volume 2, Issue 5, 29 November 2012, Pages 1438–1447