کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2041084 1073144 2015 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Transcriptome Analysis of Individual Stromal Cell Populations Identifies Stroma-Tumor Crosstalk in Mouse Lung Cancer Model
ترجمه فارسی عنوان
تجزیه و تحلیل ترانزیت کروم از جمعیت سلول های استرومائی فردی، تداخل استروما-تومور را در مدل سرطان ریه ماوس شناسایی می کند.
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
چکیده انگلیسی


• Tumor microenvironment heterogeneity is analyzed in KrasG12D/+;p53−/− lung cancer
• RNA-seq identifies differentially expressed genes in stromal and epithelial cells
• A computational model is developed, identifying paracrine/autocrine crosstalk
• Computationally predicted crosstalk pathway is experimentally validated

SummaryEmerging studies have begun to demonstrate that reprogrammed stromal cells play pivotal roles in tumor growth, metastasis, and resistance to therapy. However, the contribution of stromal cells to non-small-cell lung cancer (NSCLC) has remained underexplored. We used an orthotopic model of Kras-driven NSCLC to systematically dissect the contribution of specific hematopoietic stromal cells in lung cancer. RNA deep-sequencing analysis of individually sorted myeloid lineage and tumor epithelial cells revealed cell-type-specific differentially regulated genes, indicative of activated stroma. We developed a computational model for crosstalk signaling discovery based on ligand-receptor interactions and downstream signaling networks and identified known and novel tumor-stroma paracrine and tumor autocrine crosstalk-signaling pathways in NSCLC. We provide cellular and molecular insights into components of the lung cancer microenvironment that contribute to carcinogenesis. This study has the potential for development of therapeutic strategies that target tumor-stroma interactions and may complement conventional anti-cancer treatments.

Graphical AbstractFigure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: - Volume 10, Issue 7, 24 February 2015, Pages 1187–1201
نویسندگان
, , , , , , , , , , , , ,