کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2041807 | 1073174 | 2014 | 8 صفحه PDF | دانلود رایگان |

• NHE7 is not a proton leak but instead is an acidifier of intracellular compartments
• NHE7-mediated vesicular acidification accelerates endocytosis
• NHE7 features provide clues for autism-spectrum-related diseases and lithium action
SummaryVesicular H+-ATPases and ClC-chloride transporters are described to acidify intracellular compartments, which also express the highly conserved Na+/H+ exchangers NHE6, NHE7, and NHE9. Mutations of these exchangers cause autism-spectrum disorders and neurodegeneration. NHE6, NHE7, and NHE9 are hypothesized to exchange cytosolic K+ for H+ and alkalinize vesicles, but this notion has remained untested in K+ because their intracellular localization prevents functional measurements. Using proton-killing techniques, we selected a cell line that expresses wild-type NHE7 at the plasma membrane, enabling measurement of the exchanger’s transport parameters. We found that NHE7 transports Li+ and Na+, but not K+, is nonreversible in physiological conditions and is constitutively activated by cytosolic H+. Therefore, NHE7 acts as a proton-loading transporter rather than a proton leak. NHE7 mediates an acidification of intracellular vesicles that is additive to that of V-ATPases and that accelerates endocytosis. This study reveals an unexpected function for vesicular Na+/H+ exchangers and provides clues for understanding NHE-linked neurological disorders.
Graphical AbstractFigure optionsDownload as PowerPoint slide
Journal: - Volume 7, Issue 3, 8 May 2014, Pages 689–696