کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2041997 | 1073181 | 2015 | 10 صفحه PDF | دانلود رایگان |

• PSM prolongs antigen early endosome localization and enhances cross-presentation
• PSM activates type I interferon response in a TRIF/MAVS-dependent manner
• PSM potentiates dendritic cell-based cancer immunotherapy
SummaryMicro- and nanometer-size particles have become popular candidates for cancer vaccine adjuvants. However, the mechanism by which such particles enhance immune responses remains unclear. Here, we report a porous silicon microparticle (PSM)-based cancer vaccine that greatly enhances cross-presentation and activates type I interferon (IFN-I) response in dendritic cells (DCs). PSM-loaded antigen exhibited prolonged early endosome localization and enhanced cross-presentation through both proteasome- and lysosome-dependent pathways. Phagocytosis of PSM by DCs induced IFN-I responses through a TRIF- and MAVS-dependent pathway. DCs primed with PSM-loaded HER2 antigen produced robust CD8 T cell-dependent anti-tumor immunity in mice bearing HER2+ mammary gland tumors. Importantly, this vaccination activated the tumor immune microenvironment with elevated levels of intra-tumor IFN-I and MHCII expression, abundant CD11c+ DC infiltration, and tumor-specific cytotoxic T cell responses. These findings highlight the potential of PSM as an immune adjuvant to potentiate DC-based cancer immunotherapy.
Graphical AbstractFigure optionsDownload as PowerPoint slide
Journal: - Volume 11, Issue 6, 12 May 2015, Pages 957–966