کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2061100 | 1076435 | 2012 | 7 صفحه PDF | دانلود رایگان |

The objectives of our study were to quantify the impact of endogeic earthworms Aporrectodea caliginosa (Savigny) on iron (Fe), manganese (Mn) and zinc (Zn) mobility and availability in soil. Dried rye straw (Cecale cereale L.), clover aboveground parts (Trifolium pratense L.) or calcium carbonate were added to determine the effects on soil micronutrient mobility. To test the importance of soil–water saturation mediated by earthworms, soil samples were modified to 60% (control) and 100% (as in casts) water holding capacity (WHC). To assess availability of micronutrients, a cucumber plant (Cucumis sativus L.) bioassay were used. Earthworm casts had generally higher amounts of water-soluble micronutrients compared with bulk soils regardless of their moisture contents. The increased micronutrient mobility was more pronounced in casts from soil samples amended with plant residues (especially with straw) and was significantly higher than mobility in control soil for at least 1 week after the casts were deposited. Pre-incubation of soils amended with clover or straw with living earthworms for 4 weeks produced an increase in both shoot biomass and translocation rate of micronutrients (Mn, Zn) into xylem sap of cucumber compared to soils not worked by earthworms. The earthworm-mediated plant performances were determined 4 weeks after the earthworms were removed. The results demonstrated that earthworms can significantly impact the formation of mobile and available micronutrients in a soil. The relationship between micronutrient availability to cucumber plants and earthworm contribution to nitrogen (N) mineralization and micronutrient mobility are discussed.
Journal: Pedobiologia - Volume 55, Issue 2, 10 March 2012, Pages 93–99