کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2066146 | 1076971 | 2006 | 12 صفحه PDF | دانلود رایگان |

Lectins are a structurally and functionally diverse group of proteins from different sources, capable to recognize and bind specifically carbohydrates. Several snake venoms contain calcium-dependent true lectins (SVLs) that recognize galactose. Herein, in order to enlighten some of the structure–function relationships of snake venom lectins (SVLs), we constructed theoretical models for 10 SVLs based on the Crotalus atrox lectin (CaL), the only SVL crystal structure available, and compared with other animal and plant lectins, and C-type lectin-like proteins (CLPs) that do not bind carbohydrates. Although these are theoretical structures, we could identify some SVL features, including: (i) a singular intrachain disulfide bond (Cys38–Cys133) that is not present in CLPs; (ii) a significant reorientation (39–41 Å) of the 80's loop position that folds back to the globular domain, assists the carbohydrate recognition domain (CRD), and orients the dimer formation, even in BfL-1 and BfL-2, which did not present the Cys86 interchain; (iii) a CRD presenting a negative and concave surface that allows the interaction with the specific saccharide hydroxyl groups and calcium ion; (iv) the role of water molecules in some interchain interactions, similar to other animal and plant lectins; and (v) the inability of forming oligomers in contrast to CaL and some CLPs, such as convulxin.
Journal: Toxicon - Volume 48, Issue 6, November 2006, Pages 690–701