کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2103854 | 1546331 | 2010 | 12 صفحه PDF | دانلود رایگان |

Immunotherapeutic ablation of lymphoma is a conceptually attractive treatment strategy that is the subject of intense translational research. Cytotoxic T lymphocytes (CTLs) that are genetically modified to express CD19- or CD20-specific, single-chain antibody–derived chimeric antigen receptors (CARs) display HLA-independent antigen-specific recognition/killing of lymphoma targets. Here, we describe our initial experience in applying CAR-redirected autologous CTL adoptive therapy to patients with recurrent lymphoma. Using plasmid vector electrotransfer/drug selection systems, cloned and polyclonal CAR+ CTLs were generated from autologous peripheral blood mononuclear cells and expanded in vitro to cell numbers sufficient for clinical use. In 2 FDA-authorized trials, patients with recurrent diffuse large cell lymphoma were treated with cloned CD8+ CTLs expressing a CD20-specific CAR (along with NeoR) after autologous hematopoietic stem cell transplantation, and patients with refractory follicular lymphoma were treated with polyclonal T cell preparations expressing a CD19-specific CAR (along with HyTK, a fusion of hygromycin resistance and HSV-1 thymidine kinase suicide genes) and low-dose s.c. recombinant human interleukin-2. A total of 15 infusions were administered (5 at 108cells/m2, 7 at 109cells/m2, and 3 at 2 × 109cells/m2) to 4 patients. Overt toxicities attributable to CTL administration were not observed; however, detection of transferred CTLs in the circulation, as measured by quantitative polymerase chain reaction, was short (24 hours to 7 days), and cellular antitransgene immune rejection responses were noted in 2 patients. These studies reveal the primary barrier to therapeutic efficacy is limited persistence, and provide the rationale to prospectively define T cell populations intrinsically programmed for survival after adoptive transfer and to modulate the immune status of recipients to prevent/delay antitransgene rejection responses.
Journal: - Volume 16, Issue 9, September 2010, Pages 1245–1256