کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2148493 | 1089565 | 2010 | 5 صفحه PDF | دانلود رایگان |

Cells with a transcription coupled repair (TCR) deficiency are characterized by a higher sensitivity to UVC irradiation and by an increase in apoptosis and chromosomal aberration frequencies. It has been claimed that the higher frequency of chromosomal aberrations results from the transcription blockage caused by UVC-lesions located in the transcribed strands of the genome. The distribution of chromosome breakpoints in euchromatic and heterochromatic regions of the X chromosome from TCR deficient and proficient Chinese hamster cell lines was studied. Most UVC-induced breakpoints occurred in euchromatic regions of the X chromosome in both cell lines. No increase of UVC-induced breakpoints in the euchromatic region of the UV61 X chromosome was observed, indicating that TCR failure alone cannot be responsible for the increased frequency of chromosomal aberrations. Differential chromatin remodeling in the TCR defective cell line is proposed as a possible mechanism involved in the distribution of UVC-induced breakpoints along the Chinese hamster X chromosome. A similar explanation for the increase of UVC-induced chromosomal aberrations in TCR defective cells is given.
Journal: Mutation Research/Genetic Toxicology and Environmental Mutagenesis - Volume 701, Issue 1, 14 August 2010, Pages 98–102