کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2154372 | 1090231 | 2008 | 5 صفحه PDF | دانلود رایگان |

IntroductionMelanins are high-molecular-weight pigments that are ubiquitous in nature and can also be synthesized in the laboratory from a variety of precursors. Melanins possess numerous interesting physicochemical characteristics, including electromagnetic radiation absorption properties and ability to chelate metals. We have recently reported that melanin has remarkable ionizing-radiation-shielding properties, possibly because it can interact with photons via Compton scattering. We hypothesized that, if administered internally, melanin could play a beneficial role by scavenging various radionuclides, in addition to radiation shielding.MethodsThree melanins were synthesized from dopamine, 3,4-dihydroxyphenylalanine (l-Dopa) and a combination of l-cysteine and l-Dopa. For control, synthetic melanin made from tyrosine polymerization (Sigma) was used. Melanins were characterized by elemental analysis. The chemosorption of 111In, 225Ac and 213Bi by melanins was studied at 37°C for up to 48 h.ResultsThe C-to-N molar ratios for dopamine, l-Dopa and tyrosine melanins were very close at 7.92, 8.39 and 8.48, respectively, while in mixed l-cysteine/l-Dopa melanin, that ratio was much lower at 3.63. This mixed melanin also contained 22.33% sulfur, thus confirming incorporation of S-containing motifs into its structure. Dopamine, l-Dopa and tyrosine melanins were very similar in their abilities to decrease the activity of 111In, 225Ac and 213Bi and their radioactive daughters in supernatants by >10-fold in comparison with the starting levels, while mixed l-cysteine/l-Dopa melanin was able to chemosorb only 111In.ConclusionsWe have demonstrated that synthetic melanins made of diverse precursors can chemosorb 111In, 213Bi and 225Ac, with dopamine, l-Dopa and tyrosine melanins being the most efficient towards all three of these radionuclides. Such properties of synthetic melanins can contribute to the development of the novel melanin-based radioprotective materials.
Journal: Nuclear Medicine and Biology - Volume 35, Issue 3, April 2008, Pages 353–357