کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2154990 1090272 2006 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In vitro and in vivo investigation of matrix metalloproteinase expression in metastatic tumor models
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی تحقیقات سرطان
پیش نمایش صفحه اول مقاله
In vitro and in vivo investigation of matrix metalloproteinase expression in metastatic tumor models
چکیده انگلیسی

IntroductionOverexpression of matrix metalloproteinases (MMPs), particularly MMP-2 and MMP-9, has been correlated with poor prognosis in several cancer types including lung, colon and breast. Noninvasive detection of MMP expression might allow physicians to better determine when more aggressive cancer therapy is appropriate. The peptide CTT (CTTHWGFTLC) was identified as a selective inhibitor of MMP-2/9 that inhibits the growth of MDA-MB-435 human breast cancer xenografts.MethodsCTT was conjugated with the bifunctional chelator DOTA (1,4,7,10-tetraazacyclotetradecane-N,N′,N″,N‴-tetraacetic acid) for radiolabeling with 64Cu (t1/2=12.7 h, 17.4% β+, 39% β−), a radionuclide suitable for positron emission tomography (PET). In vitro affinity was determined in a fluorogenic substrate assay. Tumor gelatinase targeting was evaluated in both biodistribution and microPET imaging studies.ResultsCu(II)-DOTA-CTT inhibited hMMP-2 (EC50=8.7 μM) and mMMP-9 (EC50=18.2 μM) with similar affinity to CTT (hMMP-2 EC50=13.2 μM; mMMP-9 EC50=11.0 μM). In biodistribution and microPET imaging studies, 64Cu-DOTA-CTT was taken up by MMP-2/9-positive B16F10 murine melanoma tumors. Subsequently, imaging studies using 64Cu-DOTA-CTT were performed on MDA-MB-435 tumor-bearing mice. With zymography, tumor MMP-2/9 expression in this model was shown to be inconsistent, resulting in microPET detection of the MDA-MB-435 tumor in only 1 of 24 imaged mice. Following limited imaging success, 64Cu-DOTA-CTT was shown to have poor in vivo stability.ConclusionsDespite some evidence for selective uptake of 64Cu-DOTA-CTT by gelatinase-expressing tumors, the low affinity for MMP-2 and MMP-9 and in vivo instability make this an inadequate radioligand for in vivo tumor evaluation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nuclear Medicine and Biology - Volume 33, Issue 2, February 2006, Pages 227–237
نویسندگان
, , , , ,