کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
227244 | 464819 | 2015 | 10 صفحه PDF | دانلود رایگان |
Anti-bacterial nanocomposites (NC1–NC4) based on cellulose acetate were prepared by dispersing ZnO nanofillers in the cellulose acetate matrix. Anti-bacterial nanocomposites were structurally and morphological examined by XRD (X-ray powder diffraction), FESEM (field emission scanning electron microscopy), and FT-IR (Fourier transform infrared) spectroscopy. All the spectroscopic techniques suggested that nanocomposites are successfully synthesized. All the nanocomposites showed anti-bacterial activity which increased as a function of zinc oxide. Further the selectivity of anti-bacterial nanocomposites was investigated toward different metal ions, including Zn2+, Cd2+, Pb2+, Mn2+, Ni2+, Fe2+, Al3+, Sb3+, and Sr3+. The selectivity data suggests that nanocomposites are more selective toward Fe2+. NC1 displayed highest uptake aptitude for Fe2+ with highest distribution coefficient of 7549.123 mL g−1. Therefore, NC1 was subjected to water permeability to explore the role of anti-bacterial nanocomposite as membrane for water purification. The results suggest that these materials are possibly appropriate for water treatments.
Journal: Journal of Industrial and Engineering Chemistry - Volume 24, 25 April 2015, Pages 266–275