کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
228028 | 464833 | 2013 | 11 صفحه PDF | دانلود رایگان |

Tetraethylorthosilicate incorporated hybrid poly(vinyl alcohol) membranes were grafted with glycidyltrimethylammonium chloride (GTMAC) in different mass%. The resulting membranes were subjected to physico-chemical investigations using Fourier transform infrared (FTIR) spectroscopy, wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA) and scanning electron microscopy (SEM). The effects of grafting and feed composition on pervaporation performance of the membranes were systematically investigated. The membrane containing 30 mass% of GTMAC exhibited the highest separation selectivity of 1570 with a flux of 1.92 × 10−2 kg/m2 h at 30 °C for 10 mass% of water in the feed. The total flux and flux of water are almost overlapping each other, manifesting that these membranes could be used effectively to break the azeotropic point of water–isopropanol mixtures. From the temperature dependent diffusion and permeation values, the Arrhenius activation parameters were estimated. The activation energy values obtained for water permeation (Epw) are two to three times lower than those of isopropanol permeation (EpIPA), suggesting that the developed membranes have higher separation ability for water–isopropanol system. The Ep and ED values ranged between 63.73 and 33.07, and 62.78 and 32.75 kJ/mol, respectively. The positive heat of sorption (ΔHs) values was obtained for all the membranes, suggesting that Henry's mode of sorption is predominant in the process.
Journal: Journal of Industrial and Engineering Chemistry - Volume 19, Issue 2, 25 March 2013, Pages 427–437