کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
237369 465703 2011 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density
چکیده انگلیسی

A method for applying nano-sized silicon dioxide guest particles onto host pharmaceutical particles (a.k.a. “dry-coating” or “nanocoating”) has been developed using conventional pharmaceutical processing equipment. It has been demonstrated that under selected conditions, a comil can be used to induce sufficient shear to disperse silicon dioxide particles onto the surfaces of host particles such as active pharmaceutical ingredients (API) without significant host particle attrition. In accordance with previous studies on dry coating, the dispersed silicon dioxide adheres to the host particle surface through van der Waals attractions, and reduces bulk powder cohesion. In this work, laboratory and pilot scale comils were used to dry coat pharmaceutical API and excipient powders with 1% w/w silicon dioxide by passing them through the mill with an appropriate combination of screen and impeller. In general, the uncoated powders exhibited poor flow and/or low bulk density. After dry coating with a comil, the powders exhibited a considerable and in some cases outstanding improvement in flow performance and bulk density. This coating process was successful at both the laboratory and pilot scale with similar improvements in flow. The superior performance of the coated powders translated to subsequent formulated blends, demonstrating the benefit of using nanocoated powders over uncoated powders. This particle engineering work describes the first successful demonstration of using a traditional pharmaceutical unit operation that can be run continuously to produce uniform nanocoating and highlights the substantial improvements to powder flow properties when this approach is used.

A method for applying nano-sized silicon dioxide guest particles onto host pharmaceutical particles using a comil was developed. After processing, previously poor flowing powders significantly increased both flow performance and bulk density. This process can be run continuously to produce uniform silicon dioxide coatings on powders and significantly improve solid dosage manufacturing performance.Figure optionsDownload as PowerPoint slideHighlights
► Pharmaceutical powders can be dry-coated with nano-sized silicon dioxide using a comil.
► Powders coated with 1 wt% silicon dioxide significantly increase their flow and bulk density.
► The superior performance of the coated powders translates to subsequent formulated blends.
► The comil dry-coating approach can be operated as a continuous manufacturing process.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Powder Technology - Volume 212, Issue 3, 25 October 2011, Pages 397–402
نویسندگان
, , , , , ,