کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
237618 465716 2011 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nozzle design influence on particle attrition by a supersonic steam jet
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Nozzle design influence on particle attrition by a supersonic steam jet
چکیده انگلیسی

This paper presents an extension of a mathematical model for particle attrition inside a fluidized bed by a supersonic air jet and its application to optimize the nozzle design. A new method to calculate grinding efficiency is presented. Also, heat transfer is included in the model because of the large interfacial temperature difference. Numerical simulations are conducted to investigate various nozzle designs, i.e. a range of area ratios (indicative of the jet being over- or under-expanded) and nozzle expansion angles, and different bed fluidization velocities. It is found that the perfectly expanded nozzle (the exit pressure equal to the outside pressure) provides better attrition performance than over- and under-expanded jets. The nozzle expansion angle also has an influence on the grinding efficiency: narrow angled nozzles have higher grinding efficiency. In addition, the analysis of various bed fluidization velocities indicates that increasing the velocity results in a modest improvement of the grinding efficiency.

Graphical AbstractA mathematical model for particle attrition inside a fluidized bed by a supersonic air jet is developed and applied to optimize the nozzle design. It is found that the perfectly expanded nozzle (exit pressure equal to the outside pressure) provides better attrition performance than over- and under-expanded jets.Figure optionsDownload as PowerPoint slideResearch Highlights
► Particle attrition model is applied to investigate industrial attrition.
► Best attrition is achieved when the nozzle operates in a perfectly expanded regime.
► Nozzles with a narrow angle expansion section provide better grinding efficiency.
► Increased bed fluidization velocity increases grinding efficiency.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Powder Technology - Volume 209, Issues 1–3, 15 May 2011, Pages 35–45
نویسندگان
, , ,