کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
239255 465808 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems
چکیده انگلیسی

Monte Carlo (MC) constitutes an important class of methods for the numerical solution of the general dynamic equation (GDE) in particulate systems. We compare four such methods in a series of seven test cases that cover typical particulate mechanisms. The four MC methods studied are: time-driven direct simulation Monte Carlo (DSMC), stepwise constant-volume Monte Carlo, constant number Monte Carlo, and multi-Monte Carlo (MMC) method. These MC's are introduced briefly and applied numerically to simulate pure coagulation, breakage, condensation/evaporation (surface growth/dissolution), nucleation, and settling (deposition). We find that when run with comparable number of particles, all methods compute the size distribution within comparable levels of error. Because each method uses different approaches for advancing time, a wider margin of error is observed in the time evolution of the number and mass concentration, with event-driven methods generally providing better accuracy than time-driven methods. The computational cost depends on algorithmic details but generally, event-driven methods perform faster than time-driven methods. Overall, very good accuracy can be achieved using reasonably small numbers of simulation particles, O(103), requiring computational times of the order 102−103 s on a typical desktop computer.

Four Monte Carlo variants are compared in a set of standard problems in population balances that include aggregation, breakup, nucleation, surface growth, and settling. Overall, very good accuracy can be achieved using reasonably small numbers of simulation particles, O (103) requiring computational times of the order 102-103 on a typical desktop computer.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Powder Technology - Volume 173, Issue 1, 10 April 2007, Pages 38–50
نویسندگان
, , , ,