کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
242576 501879 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Theoretical modeling and experimental investigations for the improvement of the mechanical efficiency in sliding vane rotary compressors
ترجمه فارسی عنوان
مدلسازی نظری و تحقیقات تجربی برای بهبود کارایی مکانیکی در کمپرسورهای دوار دیزلی
کلمات کلیدی
کمپرسور روتاری کشویی کمپرسور جابجایی مثبت، سیستم های هوای فشرده، نمودار نشانگر، مبدل فشار پیزوالکتریک، کارایی مکانیکی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی مهندسی انرژی و فناوری های برق
چکیده انگلیسی


• Breakdown of energy flows in sliding vane rotary compressors.
• Comprehensive model to simulate the performances of industrial machines.
• Experimental campaign at different outlet pressure levels and revolution speeds.
• Identification of the friction coefficient.
• Optimization of several design parameters to achieve mechanical efficiency improvements.

Positive displacement compressors lead the market of compressed air production for industrial applications. Among them, sliding vane rotary compressors represent an energetically virtuous alternative to the current compression technologies. In the present work, the effects of compressor design parameters were investigated through a comprehensive approach that aimed at addressing more efficient machines to promote sliding vane compressors as the key enabling technology in compressed air systems. A comprehensive mathematical model was developed to study the main phenomena occurring in this kind of compressors. The model provides the cell volume evolution over a whole rotation during which filling, compression and discharge processes occur. The first and latter phases are described by the quasi-propagatory approach that represents the inertial, capacitive and resistive features of one-dimensional unsteady flows. The dynamics of the compressor blades led to four different arrangements inside the rotor slots while an analysis of the hydrodynamic lubrication established between blade tip and stator wall focused on the oil film thickness evolution to prevent dry contacts. An extensive experimental campaign on a mid-size industrial compressor allowed the model validation at different outlet pressure levels and revolution speeds using a direct measurement of mechanical power and the reconstruction of the indicator diagram from piezoelectric pressure transducers. The friction coefficient at the contact points between blades with stator and rotor was estimated in 0.065 and further improvements of the mechanical efficiency were eventually addressed considering the roles of compressor aspect ratio, revolution speed, and blade tilt. The first two theoretical optimizations might lead to an increase of the compressor efficiency of 2 and 9 percentage points respectively. On the other hand, acting on the blade tilt would not produce relevant improvements.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Energy - Volume 142, 15 March 2015, Pages 95–107
نویسندگان
, ,