کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
247538 502432 2008 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving the reliability of a Bridge Management System (BMS) using an ANN-based Backward Prediction Model (BPM)
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
Improving the reliability of a Bridge Management System (BMS) using an ANN-based Backward Prediction Model (BPM)
چکیده انگلیسی

The slow adoption of Bridge Management Systems (BMSs) and its impractical future prediction of the condition rating of bridges are attributed to the inconsistency between BMS inputs and bridge agencies' existing data for a BMS in terms of compatibility and the enormous number of bridge datasets that include historical structural information. Among these, historical bridge element condition ratings are some of the key pieces of information required for bridge asset prioritisation but in most cases only limited data is available.This study addresses the abovementioned difficulties faced by bridge management agencies by using limited historical bridge inspection records to model time-series element-level data. This paper presents an Artificial Neural Network (ANN) based prediction model, called the Backward Prediction Model (BPM), for generating historical bridge condition ratings using limited bridge inspection records. The BPM employs historical non-bridge datasets such as traffic volumes, populations and climates, to establish correlations with existing bridge condition ratings from very limited bridge inspection records. The resulting model predicts the missing historical condition ratings of individual bridge elements. The outcome of this study can contribute to reducing the uncertainty in predicting future bridge condition ratings and so improve the reliability of various BMS analysis outcomes.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automation in Construction - Volume 17, Issue 6, August 2008, Pages 758–772
نویسندگان
, , , ,