کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
249363 | 502607 | 2010 | 9 صفحه PDF | دانلود رایگان |

This paper investigates the energy-saving potential of a thermal comfort-controlled office building. A comparative simulation study between the thermal comfort control and conventional thermostatic control is conducted on a building with glass façades where changes in the outdoor temperature and solar radiation over the course of a day affect radiant temperature and thus thermal comfort. To evaluate the thermal performance in the comfort-controlled space, a PMV-based thermal comfort controller, which adjusts the set-point room temperature of the existing thermostatic controller according to the changes of environmental variables, is assumed. The results demonstrate that thermal comfort competes with energy saving in a conventional thermostatic-controlled space. However, it is suggested that thermal comfort control provides consistent thermal comfort as well as energy-saving effect. The results show that energy consumption in a thermal comfort-controlled space is more affected by a change in the mean radiant temperature than in the conventional thermostatic-controlled space. The energy-saving potential in the thermal comfort-controlled space increases with low mean radiant temperature conditions. Although the energy-saving potential is reduced under high mean radiant temperature conditions, it is suggested that thermal comfort control is still a reasonable strategy to achieve both thermal comfort and energy savings simultaneously.
Journal: Building and Environment - Volume 45, Issue 9, September 2010, Pages 1914–1922