کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
252622 | 502968 | 2010 | 10 صفحه PDF | دانلود رایگان |

Based on the first-order shear deformation theory (FSDT), approximate solution for FG (functionally graded) laminated piezoelectric cylindrical shells under thermal shock and moving mechanical loads is given utilizing Hamilton’s principle. The thin piezoelectric layers embedded on inner and outer surfaces of the functionally graded layer are acted as distributed sensor and actuator to control dynamic characteristics of the FG laminated cylindrical shells. Here, the modal analysis technique and Newmark’s integration method are used to calculate the dynamic response of FG laminated cylindrical shells. Constant-gain negative velocity feedback approach is used for active vibration control. The active vibration control to a single moving concentrated loading, thermal shock loading and a continuous stream of moving concentrated loadings is, respectively, investigated. Results indicate that the control gain and velocity of moving loadings have significant effects on the dynamic response and resonance of the system.
Journal: Composite Structures - Volume 93, Issue 1, December 2010, Pages 132–141