کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
262604 504043 2015 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An Intelligent MPPT controller based on direct neural control for partially shaded PV system
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
An Intelligent MPPT controller based on direct neural control for partially shaded PV system
چکیده انگلیسی


• Intelligent MPPT controller improves the performance in transient operations.
• On-line learning gradient descent algorithm on direct neural control is utilized.
• Off-line Big Bang–Big Crunch optimization method is employed.
• The intelligent controller is tested under partial shading conditions.
• The MPPT controller can be easily implemented.

The development of an effective maximum power point tracking (MPPT) algorithm is important in order to achieve maximum power operation in a photovoltaic system (PV). In this study, a direct neural control (DNC) scheme is developed. The intelligent MPPT controller consists of a hybrid learning mechanism; an on-line learning rule based on gradient decent method and an off-line learning rule based on Big Bang–Big Crunch (BB–BC) algorithm. The effectiveness of the proposed system is tested under partial shading conditions by applying the cascaded converter topology. The feasibility of the DNC is evaluated by the simulation results and compared to the conventional perturbation and observation (P&O) method.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 90, 1 March 2015, Pages 51–64
نویسندگان
, , , ,