کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
264531 504103 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Energy partition and conversion of solar and thermal radiation into sensible and latent heat in a greenhouse under arid conditions
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
پیش نمایش صفحه اول مقاله
Energy partition and conversion of solar and thermal radiation into sensible and latent heat in a greenhouse under arid conditions
چکیده انگلیسی

For a greenhouse thermal analysis, it is essential to know the energy partition and the amount of solar and thermal radiation converted into sensible and latent heat in the greenhouse. Factors that are frequently needed are: efficiency of utilization of incident solar radiation (π), and sensible and latent heat factors (η and δ). Previous studies considered these factors as constant parameters. However, they depend on the environmental conditions inside and outside the greenhouse, plants and soil characteristics, and structure, orientation and location of the greenhouse. Moreover, these factors have not yet been evaluated under the arid climatic conditions of the Arabian Peninsula.In this study, simple energy balance equations were applied to investigate π, η and δ; energy partitioning among the greenhouse components; and conversion of solar and thermal radiation into sensible and latent heat. For this study, we used an evaporatively cooled, planted greenhouse with a floor area of 48 m2. The parameters required for the analysis were measured on a sunny, hot summer day. The results showed that value of π was almost constant (≅0.75); whereas the values of η and δ strongly depended on the net radiation over the canopy (Rna); and could be represented by exponential decay functions of Rna.At a plant density corresponding to a leaf area index (LAI) of 3 and an integrated incident solar energy of 27.7 MJ m−2 d−1, the solar and thermal radiation utilized by the greenhouse components were 20.7 MJ m−2 d−1 and 3.74 MJ m−2 d−1, respectively. About 71% of the utilized radiation was converted to sensible heat and 29% was converted to latent heat absorbed by the inside air. Contributions of the floor, cover and plant surfaces on the sensible heat of the inside air were 38.6%, 48.2% and 13.2%, respectively.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy and Buildings - Volume 43, Issue 7, July 2011, Pages 1740–1747
نویسندگان
, ,