کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2819140 1569908 2008 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Using protein binding site prediction to improve protein docking
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی ژنتیک
پیش نمایش صفحه اول مقاله
Using protein binding site prediction to improve protein docking
چکیده انگلیسی

Predicting protein interaction interfaces and protein complexes are two important related problems. For interface prediction, there are a number of tools, such as PPI–Pred, PPISP, PINUP, Promate, and SPPIDER, which predict enzyme–inhibitor interfaces with success rates of 23% to 55% and other interfaces with 10% to 28% on a benchmark dataset of 62 complexes. Here, we develop, metaPPI, a meta server for interface prediction. It significantly improves prediction success rates to 70% for enzyme–inhibitor and 44% for other interfaces. As shown with Promate, predicted interfaces can be used to improve protein docking. Here, we follow this idea using the meta server instead of individual predictions. We confirm that filtering with predicted interfaces significantly improves candidate generation in rigid-body docking based on shape complementarity. Finally, we show that the initial ranking of candidate solutions in rigid-body docking can be further improved for the class of enzyme–inhibitor complexes by a geometrical scoring which rewards deep pockets. A web server of metaPPI is available at scoppi.tu-dresden.de/metappi. The source code of our docking algorithm BDOCK is also available at www.biotec.tu-dresden.de/~bhuang/bdock.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Gene - Volume 422, Issues 1–2, 1 October 2008, Pages 14–21
نویسندگان
, ,