کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
287514 | 509570 | 2014 | 16 صفحه PDF | دانلود رایگان |

• A model is developed for a rotating wind turbine blade mounted with a roller damper.
• Optimization and parametric studies are carried out for the damper.
• The damper effectively control the edgewise vibration with very small mass ratios.
• The damper performs well in various working conditions for the wind turbine.
• The decoupled optimization is verified by a more sophisticated aeroelastic model.
Edgewise vibrations in wind turbine blades are lightly damped, and large amplitude vibrations induced by the turbulence may significantly shorten the fatigue life of the blade. This paper investigates the performance of roller dampers for mitigation of edgewise vibrations in rotating wind turbine blades. Normally, the centrifugal acceleration of the rotating blade can reach to a magnitude of 7–8g, which makes it possible to use this kind of damper with a relatively small mass ratio for suppressing edgewise vibrations effectively. The parameters of the damper to be optimized are the mass ratio, the frequency ratio, the coefficient of rolling friction and the position of the damper in the blade. The optimization of these parameters has been carried out on a reduced 2-DOF nonlinear model of the rotating wind turbine blade equipped with a roller damper in terms of a ball or a cylinder, ignoring the coupling with other degrees of freedom of the wind turbine. The edgewise modal loading on the blade has been calculated from a more sophisticated 13-DOF aeroelastic wind turbine model with due consideration to the indicated couplings, the turbulence and the aerodynamic damping. Various turbulence intensities and mean wind speeds have been considered to evaluate the effectiveness of the roller damper in reducing edgewise vibrations when the working conditions of the wind turbine are changed. Further, the optimized roller damper is incorporated into the 13-DOF wind turbine model to verify the application of the decoupled optimization. The results indicate that the proposed damper can effectively improve the structural response of wind turbine blades.
Journal: Journal of Sound and Vibration - Volume 333, Issue 21, 13 October 2014, Pages 5283–5298