کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
288921 | 509652 | 2012 | 22 صفحه PDF | دانلود رایگان |

A thin plate, excited by a harmonic external forcing of increasing amplitude, shows transitions from a periodic response to a chaotic state of wave turbulence. By analogy with the transition to turbulence observed in fluid mechanics as the Reynolds number is increased, a generic transition scenario for thin vibrating plates, first experimentally observed, is here numerically studied. The von Kármán equations for thin plates, which include geometric non-linear effects, are used to model large amplitude vibrations, and an energy-conserving finite difference scheme is employed for discretisation. The transition scenario involves two bifurcations separating three distinct regimes. The first regime is the periodic, weakly non-linear response. The second is a quasiperiodic state where energy is exchanged between internally resonant modes. It is observed only when specific internal resonance relationships are fulfilled between the eigenfrequencies of the structure and the forcing frequency; otherwise a direct transition to the last turbulent state is observed. This third, or turbulent, regime is characterized by a broadband Fourier spectrum and a cascade of energy from large to small wavelengths. For perfect plates including cubic non-linearity, only third-order internal resonances are likely to exist. For imperfect plates displaying quadratic nonlinearity, the energy exchanges and the quasiperiodic states are favored and thus are more easily obtained. Finally, the turbulent regime is characterized in the light of available theoretical results from wave turbulence theory.
► The transition to turbulence for thin vibrating plates is studied.
► A generic scenario is inferred from experiments.
► Numerical results confirm that mode couplings through internal resonances drives the scenario.
► Wave turbulence sets in after the second bifurcation.
Journal: Journal of Sound and Vibration - Volume 331, Issue 2, 12 January 2012, Pages 412–433