کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
289185 509667 2011 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Energy flow model considering near field energy for predictions of acoustic energy in low damping medium
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
Energy flow model considering near field energy for predictions of acoustic energy in low damping medium
چکیده انگلیسی

The Acoustic Energy Flow Boundary Element Method (AEFBEM) is developed to predict the acoustic energy density and intensity of an engineering system. Up to now, the acoustic energy flow model has been used only for analysis of high frequencies or radiation noise because of plane wave and far-field assumptions. In this research, a new energy flow governing equation that can consider the near field acoustic energy term and spherical wave characteristics is derived successfully to predict the acoustic energy density and intensity of a system in the medium-to-high frequency range. A near field term of acoustic energy in spherical coordinate is added to the relationship between energy density and energy flow. But with the far-field assumption, this term vanishes, so the relationship between energy density and energy flow becomes the same as that of the plane wave. By considering the near field energy term without far-field assumption, the energy density at medium frequencies can be estimated. However, the governing equation has to be numerically manipulated for use in the analysis of complex structures; therefore, the Boundary Element Method (BEM) is implemented. AEFBEM is a numerical analysis method formulated by applying the boundary element method to an acoustic energy flow governing equation. It is very powerful in predicting the acoustic energy density and intensity of complex structures in medium-to-high frequency ranges, and can analyze interior noise and radiating sound. To verify its validity, several numerical results are provided. BEM and AEFBEM were compared with respect to energy density, and the results from both methods were similar.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Sound and Vibration - Volume 330, Issue 2, 17 January 2011, Pages 271–286
نویسندگان
, , , ,