| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
|---|---|---|---|---|
| 289201 | 509668 | 2011 | 18 صفحه PDF | دانلود رایگان |
In this work, a chiral metacomposite is proposed by integrating two-dimensional periodic chiral lattice with elastic metamaterial inclusions for low-frequency wave applications. The plane harmonic wave propagation in the proposed metacomposite is investigated through the finite element technique and Bloch's theorem. Band diagrams are obtained to illustrate wave properties of the chiral metacomposite. Effective dynamic properties of the chiral metacomposite are numerically calculated to explain low-frequency bandgap behavior in the chiral metacomposite. Interestingly doubly negative effective density and modulus of the chiral metacomposite are found in a specific frequency range, where a pass band with negative group velocity is observed. Tuning of the resulting low-frequency bandgaps is then discussed by adjusting microstructure parameters of the metamaterial inclusion and lattice geometry. Specifically design of a metacomposite beam structure for the broadband low-frequency vibration suppression is demonstrated.
Journal: Journal of Sound and Vibration - Volume 330, Issue 11, 23 May 2011, Pages 2536–2553