کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
289310 509674 2010 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The design of an optimal viscous damper for a bridge stay cable using energy-based approach
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
The design of an optimal viscous damper for a bridge stay cable using energy-based approach
چکیده انگلیسی

An energy-based method is developed in the present paper to evaluate the damping property of a stay cable when transversely attached to a viscous damper. The overall increase of the cable damping offered by the external damper is determined by examining the time history of the kinetic energy in the damped cable. The concept of kinetic energy decay ratio is introduced as a key index to evaluate the effectiveness of a damper design in suppressing cable vibration. Compared to earlier studies, the proposed energy-based approach has no restrictions on the damper location. In addition, the flexural rigidity and sag extensibility of the cable are included in the formulation. Numerical simulation of free vibration of a damped stay cable is conducted using ABAQUS. To assist the design process, a set of damping estimation curves, which directly relate a damper design with the corresponding equivalent structural damping in a damped cable are developed for the practical parameter ranges of bridge stay cables. A number of numerical examples are presented. The validity and accuracy of the proposed method and damping estimation curves are verified by comparing with other studies. Results show that the energy-based approach developed in the present study is effective and efficient in determining the overall damping property of a cable-damper system, particularly in the preliminary stage of a damper design. In addition, the flexible applications of the developed damping estimation curves to damper design are demonstrated through these examples.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Sound and Vibration - Volume 329, Issue 22, 25 October 2010, Pages 4689–4704
نویسندگان
, , ,