کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
289355 | 509676 | 2011 | 22 صفحه PDF | دانلود رایگان |

This paper deals with the problem of robust reliable energy-to-peak controller design for seismic-excited buildings with actuator faults and parameter uncertainties. It is assumed that uncertainties mainly exist in damping and stiffness of the buildings because they are difficult to be measured precisely. The objective of designing controllers is to guarantee the asymptotic stability of closed-loop systems and attenuate disturbance from earthquake excitation. Energy-to-peak performance is believed to be of great significance when conditions and requirements of active building vibration control are carefully considered. Based on energy-to-peak control theory and linear matrix inequality techniques, a new approach for reliable building vibration control with satisfactory energy-to-peak performance is presented. An n-degree-of-freedom linear building structure under earthquake excitation is analyzed and simulations are employed to validate the effectiveness of the proposed approach in reducing seismic-excited building vibration. Some comparisons are also made between energy-to-peak control systems and H∞H∞ control systems to further prove the importance of the method raised in this paper.
Journal: Journal of Sound and Vibration - Volume 330, Issue 4, 14 February 2011, Pages 581–602