کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
290109 | 509713 | 2009 | 28 صفحه PDF | دانلود رایگان |

As a first step in the development of a model for predicting the noise transmission of sonic booms inside buildings, a numerical solution for the transmission of a shock wave with an arbitrary time history into a rectangular room with a plaster–wood wall is investigated. The dynamics of this fluid–structure system, including their interaction, is computed in the time domain using a modal-interaction method. The formulation of the problem, illustrative numerical results, and a parametric study are presented. The experimental effort dedicated to validating the numerical formulation is also presented. A speaker generating sonic booms with various durations is used to structurally load a plaster–wood wall mounted in the opening of a cinderblock room. The measured wall vibration and pressures at several locations inside the room are compared to the numerical predictions, showing a fairly good agreement overall. Results from this study can potentially be used by aircraft designers to minimize the noise impact in residential houses.
Journal: Journal of Sound and Vibration - Volume 327, Issues 3–5, 13 November 2009, Pages 529–556