کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
295027 511513 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Application of regularized deconvolution technique for predicting pavement thin layer thicknesses from ground penetrating radar data
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
Application of regularized deconvolution technique for predicting pavement thin layer thicknesses from ground penetrating radar data
چکیده انگلیسی


• We use the deconvolution algorithm to deal with the “thin layer problem”.
• Regularization is used to make the solution of ill-posed problem smooth.
• The maximum thickness estimation error is 4.24%.

In this paper, regularized deconvolution is utilized to analyze GPR signal collected from thin asphalt pavement overlays of various mixtures and thicknesses on a test site. By applying regularized deconvolution and the L-curve method, the overlapped interface was identified in the signal. The thickness of the thin layer was predicted with maximum error of 4.2%, which is less than 1.5 mm, a value well below the layer tolerance during construction. The study shows that the algorithm based on regularized deconvolution is a simple and effective approach for processing GPR data collected from thin pavement layers to predict their thickness.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NDT & E International - Volume 73, July 2015, Pages 1–7
نویسندگان
, , ,