کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
295374 511542 2011 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
پیش نمایش صفحه اول مقاله
Characterization of ASR damage in concrete using nonlinear impact resonance acoustic spectroscopy technique
چکیده انگلیسی

This research reports on a successful application of the nonlinear impact resonance acoustic spectroscopy (NIRAS) technique for the characterization of progressive damage in standard concrete specimens. Damage in the specimens is introduced, following ASTM C 1293 testing procedures, through the deleterious alkali–silica reaction (ASR), which leads to the formation of a gel-like reaction product, microcracks, and interfacial debonding between cement and aggregate phases. The microcracks and debonded interfaces act to increase the nonlinearity of concrete. The response of the specimen to impact loading is analyzed to obtain a nonlinearity parameter, which is used as a measure of damage. Measurements are performed on concrete prisms undergoing the ASTM C 1293 expansion test; three aggregates with varying reactivity are examined. The results from the expansion test are compared with those from the NIRAS measurements. For potentially reactive aggregate, the NIRAS technique offers a more definitive assessment of the damage state of the specimen and can be used to distinguish marginally reactive aggregates. The NIRAS results not only demonstrate a clear distinction between nonreactive and reactive aggregates using the nonlinearity parameter, but also the capability to quantitatively track ASR-induced damage in concrete, potentially forming the foundation for field assessment and monitoring.


► Applies nonlinear impact resonance acoustic spectroscopy (NIRAS) to detect damage in concrete.
► Higher nonlinearity is measured for damaged samples compared to reference.
► Demonstrates higher sensitivity to damage than traditional linear resonance method.
► Correlation with expansion measurements for known reactive samples.
► Demonstrates high repeatability of successive measurements.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NDT & E International - Volume 44, Issue 8, December 2011, Pages 721–727
نویسندگان
, , , ,