کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
309072 513579 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Crashworthiness optimization design for foam-filled multi-cell thin-walled structures
ترجمه فارسی عنوان
طراحی بهینه سازی ضربه ناپذیری برای ساختارهای نازک دیواره چند سلولی پر شده با فوم
کلمات کلیدی
ساختار پر شده با فوم ساختار نازک دیواره چند سلولی، خرابی طراحی بهینه سازی، روش عنصر محدود
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
چکیده انگلیسی


• The energy absorption characteristics of six kinds of FMTSs are first investigated.
• The FMTS with nine cells has the most excellent crashworthiness characteristics in our considered cases.
• RBF metamodels perform the best in approximating the objective functions in our considered problem.
• Multi-objective optimization design for FMTS using the metamodels which are chosen from multiple metamodels is first carried out.
• The optimal design of FMTS with nine cells is an extremely excellent energy absorber.

Foam-filled thin-walled structure and multi-cell thin-walled structure both have recently gained attentions for their excellent energy absorption capacity. As an integrator of the above two kinds of thin-walled structures, foam-filled multi-cell thin-walled structure (FMTS) may have extremely excellent energy absorption capacity. This paper firstly investigates the energy absorption characteristics of FMTSs by nonlinear finite element analysis through LS-DYNA. Based on the numerical results, it can be found that the FMTS with nine cells has the most excellent crashworthiness characteristics in our considered cases. Thus, the FMTSs with cell number n=9 are then optimized by adopting a multi-objective particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity and minimum peak crushing force (PCF). During the process of multi-objective optimization design (MOD), four kinds of commonly used metamodels, namely polynomial response surface (PRS), radial basis function (RBF), Kriging (KRG) and support vector regression (SVR) for SEA and PCF, are established to reduce the computational cost of crash simulations by the finite element method. In order to choose the best metamodel for optimization, the accuracies of these four kinds of metamodels are compared by employing the error evaluation indicators of the relative error (RE) and the root mean square error (RMSE). The optimal design of FMTSs with nine cells is an extremely excellent energy absorber and can be used in the future vehicle body.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Thin-Walled Structures - Volume 75, February 2014, Pages 8–17
نویسندگان
, , , ,