کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
376772 658307 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Smooth sparse coding via marginal regression for learning sparse representations
ترجمه فارسی عنوان
برنامه نویسی پراکنده صاف از طریق رگرسیون حاشیه ای برای یادگیری تضمینی پراکنده
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

We propose and analyze a novel framework for learning sparse representations based on two statistical techniques: kernel smoothing and marginal regression. The proposed approach provides a flexible framework for incorporating feature similarity or temporal information present in data sets via non-parametric kernel smoothing. We provide generalization bounds for dictionary learning using smooth sparse coding and show how the sample complexity depends on the L1L1 norm of kernel function used. Furthermore, we propose using marginal regression for obtaining sparse codes which significantly improves the speed and allows one to scale to large dictionary sizes easily. We demonstrate the advantages of the proposed approach, both in terms of accuracy and speed by extensive experimentation on several real data sets. In addition, we demonstrate how the proposed approach can be used for improving semi-supervised sparse coding.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Artificial Intelligence - Volume 238, September 2016, Pages 83–95
نویسندگان
, , ,