کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
378616 659173 2007 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Computational models of inductive reasoning using a statistical analysis of a Japanese corpus
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Computational models of inductive reasoning using a statistical analysis of a Japanese corpus
چکیده انگلیسی

Existing computational models of human inductive reasoning have been constructed based on psychological evaluations concerning the similarities or relationships between entities. However, the costs involved in collecting psychological evaluations for the sheer number of entities that exist mean that they are prohibitively impractical. In order to avoid this problem, the present article examines three types of models: a category-based neural network model, a category-based Bayesian model, and a feature-based neural network model. These models utilize the results of a statistical analysis of a Japanese corpus computing co-occurrence probabilities for word pairs, rather than using psychological evaluations. Argument strength ratings collected by a psychological experiment were found to correlate well with simulations for the category-based neural network model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cognitive Systems Research - Volume 8, Issue 4, December 2007, Pages 282–299
نویسندگان
, , ,