کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
379011 659251 2011 20 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Privacy-preserving publishing microdata with full functional dependencies
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Privacy-preserving publishing microdata with full functional dependencies
چکیده انگلیسی

Data publishing has generated much concern on individual privacy. Recent work has shown that different background knowledge can bring various threats to the privacy of published data. In this paper, we study the privacy threat from the full functional dependency (FFD) that is used as part of adversary knowledge. We show that the cross-attribute correlations by FFDs (e.g., Phone → Zipcode  ) can bring potential vulnerability. Unfortunately, none of the existing anonymization principles (e.g., k-anonymity, ℓℓ-diversity, etc.) can effectively prevent against an FFD-based privacy attack. We formalize the FFD-based privacy attack and define the privacy model, (d,ℓ)(d,ℓ)-inference, to combat the FD-based attack. We distinguish the safe FFDs that will not jeopardize privacy from the unsafe ones. We design robust algorithms that can efficiently anonymize the microdata with low information loss when the unsafe FFDs are present. The efficiency and effectiveness of our approach are demonstrated by the empirical study.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Data & Knowledge Engineering - Volume 70, Issue 3, March 2011, Pages 249–268
نویسندگان
, ,