کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
379135 659268 2009 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
2D texture based classification, segmentation and 3D orientation estimation of tissues using DT-CWT feature extraction methods
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
2D texture based classification, segmentation and 3D orientation estimation of tissues using DT-CWT feature extraction methods
چکیده انگلیسی

In this study, four different 2D dual-tree complex wavelet (DT-CWT) based texture feature extraction methods are developed and their applications are demonstrated in segmenting and classifying tissues. Two of the methods use rotation variant texture features and the other two use rotation invariant features. This paper also proposes a novel approach to estimate 3D orientations of tissues based on rotation variant DT-CWT features. The method updates the strongest structural anisotropy direction with an iterative approach and converges to a volume orientation in few steps. Although classification and segmentation results show that there is no significant difference in the performance between rotation variant and invariant features; the latter are more robust to changes in texture rotation, which is essential for classification and segmentation of objects from 3D datasets such as medical tomography images.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Data & Knowledge Engineering - Volume 68, Issue 12, December 2009, Pages 1383–1397
نویسندگان
, , , , ,