کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
379150 | 659269 | 2009 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Analysis of Naive Bayes’ assumptions on software fault data: An empirical study
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی کامپیوتر
هوش مصنوعی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Software defect prediction is important for reducing test times by allocating testing resources effectively. In terms of predicting the defects in software, Naive Bayes outperforms a wide range of other methods. However, Naive Bayes assumes the ‘independence’ and ‘equal importance’ of attributes. In this work, we analyze these assumptions of Naive Bayes using public software defect data from NASA. Our analysis shows that independence assumption is not harmful for software defect data with PCA pre-processing. Our results also indicate that assigning weights to static code attributes may increase the prediction performance significantly, while removing the need for feature subset selection.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Data & Knowledge Engineering - Volume 68, Issue 2, February 2009, Pages 278–290
Journal: Data & Knowledge Engineering - Volume 68, Issue 2, February 2009, Pages 278–290
نویسندگان
Burak Turhan, Ayse Bener,