کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
379206 659274 2009 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Determining the best K for clustering transactional datasets: A coverage density-based approach
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Determining the best K for clustering transactional datasets: A coverage density-based approach
چکیده انگلیسی

The problem of determining the optimal number of clusters is important but mysterious in cluster analysis. In this paper, we propose a novel method to find a set of candidate optimal number Ks of clusters in transactional datasets. Concretely, we propose Transactional-cluster-modes Dissimilarity based on the concept of coverage density as an intuitive transactional inter-cluster dissimilarity measure. Based on the above measure, an agglomerative hierarchical clustering algorithm is developed and the Merging Dissimilarity Indexes, which are generated in hierarchical cluster merging processes, are used to find the candidate optimal number Ks of clusters of transactional data. Our experimental results on both synthetic and real data show that the new method often effectively estimates the number of clusters of transactional data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Data & Knowledge Engineering - Volume 68, Issue 1, January 2009, Pages 28–48
نویسندگان
, , , ,