کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
396482 670352 2016 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs
ترجمه فارسی عنوان
روند عمومی چارچوب استخراج از معادن برای ارتباط، پیش بینی و خوشه بندی رفتار دینامیکی بر اساس وقایع ثبت
کلمات کلیدی
روند استخراج از معادن ؛ تصمیم و رگرسیون درختی. دستکاری وقایع ثبت. خوشه بندی وقایع ثبت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی

Process mining can be viewed as the missing link between model-based process analysis and data-oriented analysis techniques. Lion׳s share of process mining research has been focusing on process discovery (creating process models from raw data) and replay techniques to check conformance and analyze bottlenecks. These techniques have helped organizations to address compliance and performance problems. However, for a more refined analysis, it is essential to correlate different process characteristics. For example, do deviations from the normative process cause additional delays and costs? Are rejected cases handled differently in the initial phases of the process? What is the influence of a doctor׳s experience on treatment process? These and other questions may involve process characteristics related to different perspectives (control-flow, data-flow, time, organization, cost, compliance, etc.). Specific questions (e.g., predicting the remaining processing time) have been investigated before, but a generic approach was missing thus far. The proposed framework unifies a number of approaches for correlation analysis proposed in literature, proposing a general solution that can perform those analyses and many more. The approach has been implemented in ProM and combines process and data mining techniques. In this paper, we also demonstrate the applicability using a case study conducted with the UWV (Employee Insurance Agency), one of the largest “administrative factories” in The Netherlands.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Systems - Volume 56, March 2016, Pages 235–257
نویسندگان
, , ,