کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
396751 670573 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Finding and ranking compact connected trees for effective keyword proximity search in XML documents
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Finding and ranking compact connected trees for effective keyword proximity search in XML documents
چکیده انگلیسی

In this paper, we study the problem of keyword proximity search in XML documents. We take the disjunctive semantics among the keywords into consideration and find top-k relevant compact connected trees (CCTrees) as the answers of keyword proximity queries. We first introduce the notions of compact lowest common ancestor (CLCA) and maximal CLCA (MCLCA), and then propose compact connected trees and maximal CCTrees (MCCTrees) to efficiently and effectively answer keyword proximity queries. We give the theoretical upper bounds of the numbers of CLCAs, MCLCAs, CCTrees and MCCTrees, respectively. We devise an efficient algorithm to generate all MCCTrees, and propose a ranking mechanism to rank MCCTrees. Our extensive experimental study shows that our method achieves both high efficiency and effectiveness, and outperforms existing state-of-the-art approaches significantly.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Systems - Volume 35, Issue 2, April 2010, Pages 186–203
نویسندگان
, , , ,