کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
396889 670620 2013 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Followee recommendation based on text analysis of micro-blogging activity
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Followee recommendation based on text analysis of micro-blogging activity
چکیده انگلیسی


• We present an effective algorithm for recommending followees in Twitter.
• We defined four different strategies to create content-based user profiles.
• The target user's own tweets are not a good source of profiling knowledge.
• Profiles based on the posts of the target user's followees give high precision values.

Nowadays, more and more users keep up with news through information streams coming from real-time micro-blogging activity offered by services such as Twitter. In these sites, information is shared via a followers/followees social network structure in which a follower receives all the micro-blogs from his/her followees. Recent research efforts on understanding micro-blogging as a novel form of communication and news spreading medium have identified three different categories of users in these systems: information sources, information seekers and friends. As social networks grow in the number of registered users, finding relevant and reliable users to receive interesting information becomes essential. In this paper we propose a followee recommender system based on both the analysis of the content of micro-blogs to detect users' interests and in the exploration of the topology of the network to find candidate users for recommendation. Experimental evaluation was conducted in order to determine the impact of different profiling strategies based on the text analysis of micro-blogs as well as several factors that allows the identification of users acting as good information sources. We found that user-generated content available in the network is a rich source of information for profiling users and finding like-minded people.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Systems - Volume 38, Issue 8, November 2013, Pages 1116–1127
نویسندگان
, , ,