کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
397035 1438459 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Large scale two sample multinomial inferences and its applications in genome-wide association studies
ترجمه فارسی عنوان
در دو مقیاس بزرگ دو نتیجه گیری چندجملهای و کاربرد آن در مطالعات ارتباط ژنوم گسترده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• A probabilistic inference is developed for large-scale multinomial distributions.
• The method improves the Dempster–Shafer theory of belief.
• The method has a desirable long-run frequency property.
• The inference method is applied in a genome-wide association study.

Statistical analysis of multinomial counts with a large number K of categories and a small number n of sample size is challenging to both frequentist and Bayesian methods and requires thinking about statistical inference at a very fundamental level. Following the framework of Dempster–Shafer theory of belief functions, a probabilistic inferential model is proposed for this “large K and small n” problem. The inferential model produces a probability triplet (p,q,r) for an assertion conditional on observed data. The probabilities p and q are for and against the truth of the assertion, whereas r=1−p−q is the remaining probability called the probability of “donʼt know”. The new inference method is applied in a genome-wide association study with very high dimensional count data, to identify association between genetic variants to the disease Rheumatoid Arthritis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 55, Issue 1, Part 3, January 2014, Pages 330-340