کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
397211 | 1438521 | 2007 | 37 صفحه PDF | دانلود رایگان |

The fuzzy lattice reasoning (FLR) classifier is presented for inducing descriptive, decision-making knowledge (rules) in a mathematical lattice data domain including space RN. Tunable generalization is possible based on non-linear (sigmoid) positive valuation functions; moreover, the FLR classifier can deal with missing data. Learning is carried out both incrementally and fast by computing disjunctions of join-lattice interval conjunctions, where a join-lattice interval conjunction corresponds to a hyperbox in RN. Our testbed in this work concerns the problem of estimating ambient ozone concentration from both meteorological and air-pollutant measurements. The results compare favorably with results obtained by C4.5 decision trees, fuzzy-ART as well as back-propagation neural networks. Novelties and advantages of classifier FLR are detailed extensively and in comparison with related work from the literature.
Journal: International Journal of Approximate Reasoning - Volume 45, Issue 1, May 2007, Pages 152-188