کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
397211 1438521 2007 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation
چکیده انگلیسی

The fuzzy lattice reasoning (FLR) classifier is presented for inducing descriptive, decision-making knowledge (rules) in a mathematical lattice data domain including space RN. Tunable generalization is possible based on non-linear (sigmoid) positive valuation functions; moreover, the FLR classifier can deal with missing data. Learning is carried out both incrementally and fast by computing disjunctions of join-lattice interval conjunctions, where a join-lattice interval conjunction corresponds to a hyperbox in RN. Our testbed in this work concerns the problem of estimating ambient ozone concentration from both meteorological and air-pollutant measurements. The results compare favorably with results obtained by C4.5 decision trees, fuzzy-ART as well as back-propagation neural networks. Novelties and advantages of classifier FLR are detailed extensively and in comparison with related work from the literature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 45, Issue 1, May 2007, Pages 152-188