کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
397264 1438436 2016 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A scalable pairwise class interaction framework for multidimensional classification
ترجمه فارسی عنوان
چارچوب تعامل کلاس های مقیاس پذیر برای طبقه بندی چند بعدی
کلمات کلیدی
طبقه بندی چند بعدی، طبقه بندی های احتمالی، زمینه های تصادفی مارکوف
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
چکیده انگلیسی


• We propose a novel framework for multidimensional classification.
• A first stage captures pairwise class interactions using transformation methods.
• A second stage builds and performs inference over a Markov Random Field.
• Its drawback is complexity. We propose strategies that improve scalability.
• We obtain favorable comparison with the state-of-the-art.

We present a general framework for multidimensional classification that captures the pairwise interactions between class variables. The pairwise class interactions are encoded using a collection of base classifiers (Phase 1), for which the class predictions are combined in a Markov random field that is subsequently used for multidimensional inference (Phase 2); thus, the framework can be positioned between multilabel Bayesian classifiers and label transformation-based approaches. Our proposal leads to a general framework supporting a wide range of base classifiers in the first phase as well as different inference methods in the second phase. We describe the basic framework and its main properties, as well as strategies for ensuring the scalability of the framework. We include a detailed experimental evaluation based on a range of publicly available databases. Here we analyze the overall performance of the framework and we test the behavior of the different scalability strategies proposed. A comparison with other state-of-the-art multidimensional classifiers show that the proposed framework either outperforms or is competitive with the tested straw-men methods.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Approximate Reasoning - Volume 68, January 2016, Pages 194–210
نویسندگان
, , , ,